Processing math: 100%

2018년 4월 6일 금요일

[플라즈마 물리]Normalization Constant & Average Kinetic Energy

Problem The 3D Maxwellian distribution is given by
f(v)=A3e(m(v2x+v2y+v2z)2KT)
with n=f(v)dvxdvydvz
(a) Show that the normalization constant is given by A3=n(m2πKT)32
(b) Show that the average kinetic energy is Eav=32KT
Answer (a)

Notice that
eax2dx=πa
n=f(v)dvxdvydvz=A3em(v2x)2KTdvxem(v2y)2KTdvyem(v2z)2KTdvz=A3(2KTπm)3
Hence,
A3=n(m2πKT)32
Answer (b)

Average energy can be calculated as
Eav=12mv2f(v)dvf(v)dv=m2n(v2x+v2y+v2z)A3em(v2x+v2y+v2z)2KTdv
The denominator is n as we calculated in previous problem. Notice that, x2eax2dx=12πa3
If we calculate the first term of equation,
Eavx=m2nA3(v2x)em(v2x+v2y+v2z)2KTdvx=m2nn(m2πKT)3212(2KTm)32π2KTπm=12KT
Hence, if we calculate vy and vz components, final result becomes Eav=32KT
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd

댓글 없음:

댓글 쓰기