Problem The 3D Maxwellian distribution is given by
\[f(\vec{v}) = A_3 e^{\left( -\frac{m(v_x^2 + v_y^2 + v_z^2)}{2KT} \right)}\]
with \[n = \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(\vec{v})dv_x dv_y dv_z\]
(a) Show that the normalization constant is given by \[A_3 = n \left( \frac{m}{2\pi KT} \right)^{\frac{3}{2}}\]
(b) Show that the average kinetic energy is \[E_{av} = \frac{3}{2}KT\]
Answer (a)
Notice that
\[\begin{aligned}
\label{eq_gauss}
\int_{-\infty}^{\infty} e^{-ax^2}dx = \sqrt{\frac{\pi}{a}}\end{aligned}\]
\[\begin{aligned}
n &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(\vec{v})dv_x dv_y dv_z \nonumber \\
&= A_3 \int_{-\infty}^{\infty} e^{ -\frac{m(v_x^2)}{2KT}}dv_x \int_{-\infty}^{\infty} e^{ -\frac{m(v_y^2)}{2KT}}dv_y \int_{-\infty}^{\infty} e^{ -\frac{m(v_z^2)}{2KT}}dv_z \nonumber \\
&= A_3 \left( \sqrt{\frac{ 2 K T \pi}{m}} \right)^{3}\end{aligned}\]
Hence,
\[A_3 = n \left( \frac{m}{2\pi KT} \right)^{\frac{3}{2}}\]
Answer (b)
Average energy can be calculated as
\[\begin{aligned}
E_{av} &= \frac{\int_{-\infty}^{\infty} \frac{1}{2}mv^2 f(\vec{v})dv}{\int_{-\infty}^{\infty}f(\vec{v})dv} \nonumber \\
&=\frac{m}{2n}\int_{-\infty}^{\infty} (v_x^2 + v_y^2 + v_z^2) A_3 e^{ -\frac{m(v_x^2 + v_y^2 + v_z^2)}{2KT} }dv\end{aligned}\]
The denominator is \(n\) as we calculated in previous problem. Notice that, \[\int x^2 e^{-ax^2}dx = \frac{1}{2}\sqrt{\frac{\pi}{a^3}}\]
If we calculate the first term of equation,
\[\begin{aligned}
E_{av_x} &= \frac{m}{2n} \int_{-\infty}^{\infty} A_3(v_x^2 ) e^{ -\frac{m(v_x^2 + v_y^2 + v_z^2)}{2KT} }dv_x \nonumber \\
&=\frac{m}{2n}n \left( \frac{m}{2\pi KT} \right)^{\frac{3}{2}} \frac{1}{2} \left( \frac{2 KT}{m} \right)^{\frac{3}{2}}\sqrt{\pi}\frac{2KT \pi}{m} \nonumber \\
&=\frac{1}{2}KT\end{aligned}\]
Hence, if we calculate \(v_y\) and \(v_z\) components, final result becomes \[E_{av} = \frac{3}{2}KT\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기