Problem The 3D Maxwellian distribution is given by
f(→v)=A3e(−m(v2x+v2y+v2z)2KT)
with n=∫∞−∞∫∞−∞∫∞−∞f(→v)dvxdvydvz
(a) Show that the normalization constant is given by A3=n(m2πKT)32
(b) Show that the average kinetic energy is Eav=32KT
Answer (a)
Notice that
∫∞−∞e−ax2dx=√πa
n=∫∞−∞∫∞−∞∫∞−∞f(→v)dvxdvydvz=A3∫∞−∞e−m(v2x)2KTdvx∫∞−∞e−m(v2y)2KTdvy∫∞−∞e−m(v2z)2KTdvz=A3(√2KTπm)3
Hence,
A3=n(m2πKT)32
Answer (b)
Average energy can be calculated as
Eav=∫∞−∞12mv2f(→v)dv∫∞−∞f(→v)dv=m2n∫∞−∞(v2x+v2y+v2z)A3e−m(v2x+v2y+v2z)2KTdv
The denominator is n as we calculated in previous problem. Notice that, ∫x2e−ax2dx=12√πa3
If we calculate the first term of equation,
Eavx=m2n∫∞−∞A3(v2x)e−m(v2x+v2y+v2z)2KTdvx=m2nn(m2πKT)3212(2KTm)32√π2KTπm=12KT
Hence, if we calculate vy and vz components, final result becomes Eav=32KT
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기