Problem 2: Prove \(-\nabla \frac{1}{|\vec{r}-\vec{r}\prime|}=\frac{\vec{r}-\vec{r}\prime}{|\vec{r}-\vec{r}\prime |^3}\)
Let \[\vec{r}=x_1\hat{x} + y_1\hat{y} + z_1\hat{z}\] \[\vec{r}\prime=x_2\hat{x} + y_2\hat{y} + z_2\hat{z}\] \[\zeta =(\vec{x_1}-\vec{x_2})^2+(\vec{y_1}-\vec{y_2})^2+(\vec{z_1}-\vec{z_2})^2\]
\[\nabla \frac{1}{|\vec{r}-\vec{r}\prime|} = \frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\frac{1}{|\vec{r}-\vec{r}\prime|}\]
Let us consider only \(\hat{x}\) components. \[\begin{aligned} \frac{\partial}{\partial x}\hat{x}\frac{1}{\zeta^{\frac{1}{2}}} &= \frac{1}{2}\zeta^{-\frac{3}{2}}\zeta\prime \nonumber \\ &=\frac{x_1 - x_2}{\zeta^{\frac{3}{2}}}\hat{x} \nonumber \\ &=\frac{x_1 - x_2}{|\vec{r}-\vec{r}\prime|^3}\hat{x} \nonumber\end{aligned}\]
Same procedure occur for the other two component. When we add all, final result become \[-\nabla \frac{1}{|\vec{r}-\vec{r}\prime|}=\frac{\vec{r}-\vec{r}\prime}{|\vec{r}-\vec{r}\prime |^3}\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기