Problem In a strictly steady state situation both the ions and the electrons will follow the Boltzmann relation
\[n_i = n_0 e^{\frac{-q_i \phi }{KT_i}}\]
For the case of an infinite, transparent grid charged to a potential \(\phi\), show that the shielding distance is then given approximately by
\[\lambda_D^{-2} = \frac{ne^2}{\epsilon_0} \left( \frac{1}{KT_e} + \frac{1}{KT_i} \right)\]
Answer
\[\begin{aligned} \nabla \cdot \vec{E} &=\frac{\rho}{\epsilon_0} = \frac{e}{\epsilon_0}(n_i - n_e) \nonumber \\ &= - \frac{e}{\epsilon_0} n_0 \left( e^{-\frac{e\phi}{KT_i}} - e^{\frac{e\phi}{KT_e}} \right) \nonumber \\ &= - \frac{e}{\epsilon_0} n_0 \left( 1 -\frac{e\phi}{KT_i} - 1 - \frac{e\phi}{KT_e} \right) \nonumber \\ \frac{d^2 \phi }{dx^2 }&=\frac{e^2 n_0}{\epsilon_0}\left( \frac{1}{KT_i} + \frac{1}{KT_e} \right) \phi \nonumber\end{aligned}\]
Hence,
\[\begin{aligned} \frac{1}{\lambda_D^2} = \frac{e^2 n_0}{\epsilon_0}\left( \frac{1}{KT_i} + \frac{1}{KT_e} \right) \nonumber\end{aligned}\]
\[\lambda_D = \sqrt{\left( \frac{\epsilon_0 K T_e T_i}{ne^2 (T_i + T_e)} \right)}\]
\(T_i << T_e \quad \quad \lambda_D \simeq \sqrt{\left( \frac{\epsilon_0 K T_i}{ne^2} \right)}\)
\(T_e << T_i \quad \quad \lambda_D \simeq \sqrt{\left( \frac{\epsilon_0 K T_e}{ne^2} \right)}\)
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기