Problem
Derive general elliptical equation for an arbitrary phase difference. Consider the case Eox≠Eoy.
(ExE0x)2+(EyE0y)2−2(ExE0x)(EyE0y)cosδ=sin2δ
Answer
Ex(z,t)=E0xcos(τ+δx)Ey(z,t)=E0ycos(τ+δy)
Ex(z,t)E0x=cos(τ)cos(δx)−sin(τ)sin(δx)Ey(z,t)E0y=cos(τ)cos(δy)−sin(τ)sin(δy)
ExE0xsin(δy)−EyE0ysin(δx)=cos(τ)sin(δy−δx)ExE0xcos(δy)−EyE0ycos(δx)=sin(τ)sin(δy−δx)
square above two equatiion and add togather leads to the general equation of ellipse.
(ExE0x)2+(EyE0y)2−2(ExE0x)(EyE0y)cosδ=sin2δ
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기