2018년 4월 11일 수요일

[플라즈마 물리][Plasma Physics]Debye Shielding 디바이 차폐

Example Problem: Debye Shielding
Consider a positive point charge immersed in a plasma as we discussed in the class. Show that the net charge in the Debye shielding cloud exactly cancels the test charge. Assume that the ions are fixed and that \(e\phi << KT_e\). Note that we assumed that ion distribution is similar to that of the electrons in the class.

Answer:

While deriving, we assume potential to be

\[\begin{aligned} \frac{e\phi}{KT_e} << 1 \quad \quad \quad n_i \simeq n_e\\ \lambda_D = \sqrt{\frac{\epsilon KT}{ne^2}}\\ \phi(r) = \frac{e}{4\pi\epsilon_0 r }e^{-\frac{r}{\lambda_D}}\end{aligned}\]

Assume \(\frac{m_i}{m_e} \rightarrow \infty\) so that ions are fixed; \(n_i(r)=n\). Further assume electrons obey the Boltzmann distribution.

\[\begin{aligned} f(u) &= A e^{\frac{\frac{-1}{2}mv^2 + q\phi}{KT_e}}\\ n_e(r) &= ne^{\frac{e\phi(r)}{K_B T}}\end{aligned}\]

\[\begin{aligned} \rho &= -e(n_i - n_e) \\ &=-e \left(n - ne^{\frac{e\phi(r)}{K_BT}} \right)\\ &= ne \left(e^{\frac{e\phi(r)}{K_BT}} - 1 \right)\\\end{aligned}\]

for \(\frac{e\phi}{KT_e} << 1\),

\[\begin{aligned} e^{\frac{e\phi(r)}{K_B T}} = 1 + \frac{1}{2}\frac{e\phi(r)}{K_B T} + ...\end{aligned}\]

\[\begin{aligned} \rho &= ne(1+\frac{e\phi(r)}{K_B T} - 1) \\ &=\frac{ne^2 \phi(r)}{K_B T} \\ &= \frac{\epsilon_0}{\lambda_D^2}\phi(r)\end{aligned}\]

\[\begin{aligned} \int \rho dv &= Q \\ &= \int_V \frac{\epsilon_0}{\lambda_D^2}\frac{e}{4\pi\epsilon_0 r }e^{-\frac{r}{\lambda_D}} r^2 \sin\theta dr d\theta d\phi\\ &= \int \frac{4\pi \epsilon_0}{\lambda_D^2}\frac{e}{4\pi \epsilon_0} r e^{-\frac{r}{\lambda_D}}dr \\ &= \frac{e}{\lambda_D^2} \int_{0}^{\infty} r e^{-\frac{r}{\lambda_D}}dr \\ &= \frac{e}{\lambda_D^2} (\lambda_D^2 e^{-\frac{r}{\lambda_D}}-\lambda_D r e^{-\frac{r}{\lambda_D}}) =0\end{aligned}\]

On the last step, when \(r = \lambda_D\), charge becomes zero. Hence, the Debye sheilding cloud exactly cancels the test charge.

4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관

이메일: ilkmooc@ilkmooc.kr

홈페이지주소: http://ilkmooc.kr

산동일크무크란? https://goo.gl/FnvqXd

댓글 없음:

댓글 쓰기