Problem Prove the symmetry property of the Green’s function satisfying the Dirichlet boundary condition \[G(\vec{x},\vec{x}^{\prime}) = G(\vec{x}^{\prime}, \vec{x})\]
Refer to Jackson Problem (1.14)
Answer
Green function \(G(\vec{x},\vec{x}^{\prime})\) satisfies Dirichlet boundary conditions; bound region \(\Omega\) with boundary \(d\Omega\), \(G(\vec{x},\vec{x}^{\prime})=0 \quad \forall x^{\prime} \in \partial \Omega\)
\[\int_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi)d^3x = \oint_s \left[ \phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi }{\partial n}\right]da\]
Substitute \(\phi = G(\vec{x},\vec{y})\) and \(\psi = G(\vec{x}^{\prime},\vec{y})\).
\[\begin{aligned} \int_{\Omega} \left[ G(\vec{x},\vec{y})\nabla^2 G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \nabla^2 G(\vec{x},\vec{y}) \right]d^3y =\nonumber \\ \int_{\partial \Omega}\left[ G(\vec{x}, \vec{y})\frac{\partial }{\partial n}G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \frac{\partial}{\partial n} G(\vec{x},\vec{y}) \right]da \nonumber\end{aligned}\]
\(G(\vec{x}, \vec{x}^{\prime})\) satisfies Dirichlet B.C. Hence \(RHS=0\); \(\Phi\) is known on the surface and \(F\) can be chosen to make \(G_D(\vec{x},\vec{x}^{\prime}=0)\) Since \[\nabla^2 G(\vec{x},\vec{y}) = -4\pi \delta^3(\vec{x}-\vec{y})\]
\[\begin{aligned} \int_{\Omega} \left[ G(\vec{x},\vec{y})\nabla^2 G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \nabla^2 G(\vec{x},\vec{y}) \right]d^3y = \nonumber \\ \int_{\Omega}\left[ -4\pi G(\vec{x},\vec{y}) \delta^3(\vec{x}^{\prime} - \vec{y})+G(x^{\prime},\vec{y}) 4\pi \delta^3(\vec{x}-\vec{y}) \right]d^3y \nonumber \\\end{aligned}\]
Finally
\[G(\vec{x},\vec{x}^{\prime}) = G(\vec{x}^{\prime}, \vec{x})\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기