2018년 4월 5일 목요일

[대학원-전자기학]문제풀이 델타함수와 발산

Problem Prove that \[\nabla^2 (\frac{1}{r}) = -4\pi \delta(\vec{x})\] where \(r=|\vec{x}|\)
Answer

\[\begin{aligned} \nabla^2 \frac{1}{r} = \nabla \cdot (\nabla \frac{1}{r}) = \nabla \cdot (-\frac{1}{r^2}\hat{r}) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \left( \frac{-1}{r^2}\right) \right) \nonumber\end{aligned}\]
Hence, the intergral of \(\nabla^2 \frac{1}{r} = 0\)
\[\int_v \nabla^2 \frac{1}{r} dv = 0\]
However, when we use the divergence theorem, we get different result.
\[\begin{aligned} \int_v \nabla^2 \frac{1}{r} dv &= \oint_s -\frac{1}{r^2}\hat{r} d\vec{a} \nonumber \\ &=\oint_s - \frac{1}{r^2} r^2\sin\theta d\theta d\phi \nonumber \\ &= -4\pi \nonumber\end{aligned}\]
This problem arise in the origin. Hence, we introduce delta function to solve this problem.
\[\nabla^2 (\frac{1}{r}) = -4\pi \delta(\vec{x})\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd

댓글 없음:

댓글 쓰기