Problem Prove that ∇2(1r)=−4πδ(→x) where r=|→x|
Answer
∇21r=∇⋅(∇1r)=∇⋅(−1r2ˆr)=1r2∂∂r(r2(−1r2))
Hence, the intergral of ∇21r=0
∫v∇21rdv=0
However, when we use the divergence theorem, we get different result.
∫v∇21rdv=∮s−1r2ˆrd→a=∮s−1r2r2sinθdθdϕ=−4π
This problem arise in the origin. Hence, we introduce delta function to solve this problem.
∇2(1r)=−4πδ(→x)
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기