2018년 4월 10일 화요일

[플라즈마물리][Plasma Physics]CH2 - Single Particle Motion - Nonuniform B-field Grad-B drift

Case Five: Non Uniform Magnetic Field

Let us assume gradient B-field exist in the z-direction with gradient along the y-direction.

\[\begin{aligned} \vec{B}(r) = B(y)\hat{z}\end{aligned}\]

Assume \(B\) is slightly in-homogeneous.

\[r_L\left| \frac{\nabla B}{B} \right|<< 1\]

\(\vec{B}\) can be expressed by the Taylor series.

\[\begin{aligned} \vec{B} = \vec{B_0} + (\vec{r} \cdot \nabla)\vec{B} + ...\end{aligned}\]

so that we have

\[\begin{aligned} \vec{B} = \vec{B_0} + (\vec{r} \cdot \nabla)\vec{B} = \vec{B_0} + y\frac{\partial \vec{B}}{\partial y}\end{aligned}\]

From the Lorentz force, we will compute the average force and determine the guiding center drift.

\[\begin{aligned} \frac{dv_x}{dt} &=\frac{q}{m}v_y B(y) \hat{x}\\ \frac{dv_y}{dt} &=-\frac{q}{m}v_x B(y) \hat{y}\end{aligned}\]

\[\begin{aligned} v_x &= v_{\perp}\cos\omega_c t \\ v_y &= \mp v_{\perp}\sin\omega_c t\end{aligned}\]

\[\begin{aligned} x &= r_L \sin(\omega_c t) \\ y &=\pm r_L \cos \omega_c t\end{aligned}\]

Hence, using above equation, we can approximate the Lorentz force in inhomogeneous B-field.

\[\begin{aligned} F_x &= qv_y B =\mp q v_{\perp}\sin(\omega_c t) \left( B_0 \pm r_L \cos(\omega_c t)\frac{\partial B}{\partial y} \right)\\ F_y &=-qv_x B = -qv_{\perp}\cos\omega_c t \left(B_0 \pm r_L \cos(\omega_c t) \frac{\partial B}{\partial y} \right)\\\end{aligned}\]

Since

\[\begin{aligned} <\sin(\omega t)> &= \frac{1}{T} \int_{0}^{T}\sin \omega t dt = 0\\ <\cos(\omega t)> &= \frac{1}{T} \int_{0}^{T} \cos \omega t dt = 0\\ <\sin^2(\omega t)> &= \frac{1}{T} \int_{0}^{T}\sin^2 \omega t dt = \frac{1}{T} \int_{0}^{T} \frac{1-\cos(2\omega t)}{2}dt = \frac{1}{2}\\ <\cos^2(\omega t)> &= \frac{1}{T} \int_{0}^{T} \cos^2 \omega t dt = \frac{1}{T} \int_{0}^{T} \frac{1+\cos(2\omega t)}{2}dt = \frac{1}{2}\\ <\sin \omega t \cos \omega t> &=\frac{1}{T} \int_{0}^{T} \cos(\omega t) \sin(\omega t)dt = \frac{1}{T} \int_{0}^{T} \frac{1}{2}\sin(2\omega t)dt =0\end{aligned}\]

we get

\[\begin{aligned} <F_x> &=\frac{1}{T}\int_{0}^{T}F_x dt =0\\ <F_y> &=\frac{1}{T}\int_{0}^{T}F_y dt \\ &=\frac{1}{T}\int_{0}^{T}F_y dt \\ &=\mp qv_{\perp}r_L \frac{\partial B}{\partial y}\frac{1}{2}\\ &=-\mu \frac{\partial B}{\partial y}\end{aligned}\]

Notice that \(\mu = \pm \frac{1}{2}q v_{\perp} r_L\). By plugging this into the guiding center drift equation for general case,

\[\begin{aligned} \vec{v}_{\nabla B} &=\frac{\vec{F}\times \vec{B}}{qB^2} \\ &= \frac{F_y \hat{y} \times B \hat{z}}{qB^2}\\ &=\frac{F_y}{qB}\hat{x} \\ &= -\frac{\mu}{qB}\frac{\partial B}{\partial y}\hat{x}\end{aligned}\]

The expression can be generalized as

\[\begin{aligned} \vec{v}_{\nabla B} = \frac{\mu}{q}\frac{\vec{B} \times \nabla B}{B^2} \end{aligned}\]

or

\[\begin{aligned} \boxed{\vec{v}_{\nabla_B} = \frac{\frac{1}{2}mv_{\perp}^2}{qB}\frac{\vec{B} \times \nabla B}{B^2}} \end{aligned}\]

The grad-B drift depends of the charge \(q\), it can cause the plasma currents and charge separation.

4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관

이메일: ilkmooc@ilkmooc.kr

홈페이지주소: http://ilkmooc.kr

산동일크무크란? https://goo.gl/FnvqXd

댓글 1개:

  1. http://studio.ilkmooc.kr/container/block-v1:ILKMOOC+PHY00401+2018_T1+type@vertical+block@712d862b50ed4bb0a67928919970597d?action=new

    답글삭제