Problem
Derive equation below given from the lecture note.
tan(2θ)=2E0xE0yE20x−E2oycosδ
Answer
Figure below shows the equation of an ellipse tilted at an angle of θ to the Ex axis.
Consider the transformation between the primed and unprimed coordinates.
E′x=Excosθ−EysinθE′y=Exsinθ+Eycosθ
(E′xE0x)2+(E′yE0y)2−2(E′xE0x)(E′yE0y)cosδ=sin2δ
E2oyE′x+E20xE′y−2E0xEoyE′xE′ycosδ=sin2δE2oxE2oy
By sbustitution and rearranging it,
E2x[Eoy2cos2θ+E20xsin2θ−2cosθsinθE0xE0ycosδ]+E2y[Eoy2sin2θ+E20xcos2θ+2cosθsinθE0xE0ycosδ]ExEy[−2cosθsinθE20y+2cosθsinθE20x−2(cos2θ−sin2θ)E0xE0ycosδ]=E20xE20ysin2δ
ExEy term must be zero in x′ andy′coordinate system.
sin(2θ)(E20x−E20y)=2cos(2θ)E0xE0ycosδ
tan(2θ)=2E0xE0yE20x−E2oycosδ
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
박스로 표시된 부분은 왜 0이 되는가?
답글삭제