Problem Consider a particle of charge \(q\) and mass \(m\), initially at rest at (0,0,0), in the presence of a static magntic field \(\vec{B}=B\hat{z}\) and \(\vec{E}=E\hat{y}\).
(a) Taking \(E, B > 0\), sketch the orbit of the particle when \(q>0\).
(b) Derive an exact expression for the orbit \([x(t),y(t),z(t)]\) or the particle. Express your answer in terms of \(E\), \(B\), and \(\omega_c\)
(c) Find the drift velocity after averaging the motion in time. If there were many particles of various charges and masses present, would there be any net current?
(d) Suppose the electric field were replaced by a force \(F\) in the \(y\)-direction. What would be the drift velocity?
Answer (a)
Answer (b)
\(\vec{B}=B\hat{z}\) and \(\vec{E}=E\hat{y}\). From Lorentz equation,
\[m\frac{dv}{dt}=q(\vec{E} + \vec{v}\times \vec{B})\]
\[\begin{aligned} \dot{v_x}&= \quad \quad \quad \quad \frac{q}{m}v_y B \nonumber \\ \dot{v_y}&= \frac{q}{m}\vec{E_y} - \frac{q}{m}v_xB \nonumber \\ \dot{v_z}&= 0\end{aligned}\]
In z-direction \[z(t) = constant = 0\]
\[\begin{aligned} \frac{dv_x}{dt} &= \frac{qB}{m}v_y = \omega_c v_y \nonumber \\ \frac{dv_y}{dt} &= \frac{qE}{m}-\frac{qB}{m}v_x = \frac{qE_y}{m}-\omega_c v_x \nonumber\end{aligned}\]
\[\begin{aligned} \frac{d^2 v_y}{dt^2} &= -\omega_c^2 v_y \nonumber \\ \frac{d^2 v_x}{dt^2} &= -\omega_c^2 \left(v_x-\frac{E}{B} \right) \nonumber\end{aligned}\]
since \(\frac{E}{B}\) is constant, \[\frac{d^2}{dt^2} \left[ v_x-\frac{E}{B} \right] = \frac{d^2 v_x}{dt^2} = -\omega_c^2 \left(v_x-\frac{E}{B} \right)\]
\[\begin{aligned} v_x &= iv_{\perp}e^{i\omega_c t} + \frac{E}{B}\nonumber \\ v_y &= v_{\perp}e^{i\omega_c t} \nonumber \end{aligned}\]
\[\begin{aligned} x(t) &= x(0) + r_L \cos{\omega_c t} +\frac{E}{B}t \nonumber \\ y(t) &= y(0) + r_L \sin{\omega_c t} \nonumber \end{aligned}\]
Answer (c)
\[<v_d> = \frac{\int_{-\infty}^{\infty}v_d f(v) dv}{\int_{-\infty}^{\infty}f(v) dv} = \frac{E}{B}\]
There will be no current because \(\vec{E} \times \vec{B}\) drifts the ions and electrons in the same direction.
Answer (d)
\[\begin{aligned} \vec{v_f}&= \frac{1}{q} \frac{\vec{F} \times \vec{B}}{B^2} \nonumber \\ &=\frac{FE}{qB}\hat{y}\end{aligned}\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd
댓글 없음:
댓글 쓰기