레이블이 greenfunction인 게시물을 표시합니다. 모든 게시물 표시
레이블이 greenfunction인 게시물을 표시합니다. 모든 게시물 표시

2018년 4월 5일 목요일

[대학원-전자기학]문제풀이 델타함수와 발산

Problem Prove that \[\nabla^2 (\frac{1}{r}) = -4\pi \delta(\vec{x})\] where \(r=|\vec{x}|\)
Answer

\[\begin{aligned} \nabla^2 \frac{1}{r} = \nabla \cdot (\nabla \frac{1}{r}) = \nabla \cdot (-\frac{1}{r^2}\hat{r}) = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2 \left( \frac{-1}{r^2}\right) \right) \nonumber\end{aligned}\]
Hence, the intergral of \(\nabla^2 \frac{1}{r} = 0\)
\[\int_v \nabla^2 \frac{1}{r} dv = 0\]
However, when we use the divergence theorem, we get different result.
\[\begin{aligned} \int_v \nabla^2 \frac{1}{r} dv &= \oint_s -\frac{1}{r^2}\hat{r} d\vec{a} \nonumber \\ &=\oint_s - \frac{1}{r^2} r^2\sin\theta d\theta d\phi \nonumber \\ &= -4\pi \nonumber\end{aligned}\]
This problem arise in the origin. Hence, we introduce delta function to solve this problem.
\[\nabla^2 (\frac{1}{r}) = -4\pi \delta(\vec{x})\]
4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관
이메일: ilkmooc@ilkmooc.kr
홈페이지주소: http://ilkmooc.kr
산동일크무크란? https://goo.gl/FnvqXd

2018년 4월 4일 수요일

[대학원-전자기학]문제풀이

Problem Prove the symmetry property of the Green’s function satisfying the Dirichlet boundary condition \[G(\vec{x},\vec{x}^{\prime}) = G(\vec{x}^{\prime}, \vec{x})\]

Refer to Jackson Problem (1.14)

Answer

Green function \(G(\vec{x},\vec{x}^{\prime})\) satisfies Dirichlet boundary conditions; bound region \(\Omega\) with boundary \(d\Omega\), \(G(\vec{x},\vec{x}^{\prime})=0 \quad \forall x^{\prime} \in \partial \Omega\)

\[\int_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi)d^3x = \oint_s \left[ \phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi }{\partial n}\right]da\]

Substitute \(\phi = G(\vec{x},\vec{y})\) and \(\psi = G(\vec{x}^{\prime},\vec{y})\).

\[\begin{aligned} \int_{\Omega} \left[ G(\vec{x},\vec{y})\nabla^2 G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \nabla^2 G(\vec{x},\vec{y}) \right]d^3y =\nonumber \\ \int_{\partial \Omega}\left[ G(\vec{x}, \vec{y})\frac{\partial }{\partial n}G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \frac{\partial}{\partial n} G(\vec{x},\vec{y}) \right]da \nonumber\end{aligned}\]

\(G(\vec{x}, \vec{x}^{\prime})\) satisfies Dirichlet B.C. Hence \(RHS=0\); \(\Phi\) is known on the surface and \(F\) can be chosen to make \(G_D(\vec{x},\vec{x}^{\prime}=0)\) Since \[\nabla^2 G(\vec{x},\vec{y}) = -4\pi \delta^3(\vec{x}-\vec{y})\]

\[\begin{aligned} \int_{\Omega} \left[ G(\vec{x},\vec{y})\nabla^2 G(\vec{x}^{\prime},\vec{y}) - G(\vec{x}^{\prime},\vec{y}) \nabla^2 G(\vec{x},\vec{y}) \right]d^3y = \nonumber \\ \int_{\Omega}\left[ -4\pi G(\vec{x},\vec{y}) \delta^3(\vec{x}^{\prime} - \vec{y})+G(x^{\prime},\vec{y}) 4\pi \delta^3(\vec{x}-\vec{y}) \right]d^3y \nonumber \\\end{aligned}\]

Finally

\[G(\vec{x},\vec{x}^{\prime}) = G(\vec{x}^{\prime}, \vec{x})\]

4차 산업혁명에 걸맞는 인터넷 기반 고등교육기관

이메일: ilkmooc@ilkmooc.kr

홈페이지주소: http://ilkmooc.kr

산동일크무크란? https://goo.gl/FnvqXd