2019년 3월 26일 화요일

Solution of Laplace Equation for Spherical Coordinate

Latex to HTML 변환기를 통해 자동변환된 코드. Reference 및 몇몇 부분에 오류가 있어 수정 필요.

Laplace Equation in Spherical Coordinates

Laplace Equation in spherical coordinates \((r, \theta, \phi)\) becomes

\[\begin{aligned} \nabla^2 V = \frac{1}{r^2}\frac{\partial}{\partial r}\Big( r^2 \frac{\partial V}{\partial r}\Big) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta} \Big( \sin\theta \frac{\partial V}{\partial \theta}\Big) + \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 V}{\partial \phi^2}=0\end{aligned}\]

\[\begin{aligned} \nabla^2 V = \frac{1}{r}\frac{\partial^2}{\partial r^2}\Big(r V\Big) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta}\Big(\sin\theta \frac{\partial V}{\partial \theta}\Big) + \frac{1}{r^2 \sin^2\theta}\frac{\partial V}{\partial \phi^2}=0\end{aligned}\]

Step 1: Separation of variables assumption

Assume a product form for the potential \(V\).

\[\begin{aligned} \boxed{V = \frac{R(r)}{r}\Theta(\theta)\Phi(\theta)}\end{aligned}\]

Here, we put \(\frac{R(r)}{r}\) for easy calculation. Then the result equation becomes

\[\begin{aligned} \frac{\Phi \Theta}{r}\frac{d^2}{d r^2}R(r)+\frac{R\Phi}{r^3 \sin\theta}\frac{d}{d \theta}\Big(\sin\theta \frac{d \Theta(\theta)}{d \theta}\Big)+\frac{R\Theta}{r^3\sin^2\theta}\frac{d \Phi(\phi)}{d \phi^2}=0 \label{eq:1} \end{aligned}\]

Step 2: Find the separated equations

If we multiply \(\frac{1}{R \Theta\Phi}\) to \(Eq.\eqref{eq:1}\).

\[\begin{aligned} \frac{1}{rR}\frac{d^2}{dr^2}R(r)+\frac{1}{r^3\sin{\theta}}\frac{1}{\Theta }\frac{d}{d\theta}\Big(\sin\theta \frac{d\Theta(\theta)}{d\theta}\Big)+\frac{1}{r^3\sin^2\theta}\frac{1}{\Phi}\frac{d\Phi(\phi)}{d\phi^2} =0\end{aligned}\]

Nothing separates until we multiply \(r^3\sin^2\theta\).

\[\begin{aligned} \frac{r^2 \sin^2\theta}{R}\frac{d^2}{dr^2}R(r) + \frac{\sin\theta}{\Theta}\frac{d}{d\theta}\Big(\sin\theta \frac{d\Theta(\theta)}{d\theta}\Big) + \frac{1}{\Phi}\frac{d\Phi(\phi)}{d\phi^2} =0\end{aligned}\]

Now, \(\Phi\) term has completely separated. If we take partial derivative with respect to \(\phi\)

\[\begin{aligned} \frac{\partial}{\partial \phi}\Big(\frac{1}{\Phi}\frac{d^2 \Phi}{d\phi^2}\Big) =0\end{aligned}\]

since the first two terms depend only on \(r\) and \(\theta\). Therefor

\[\begin{aligned} \frac{1}{\Phi}\frac{d^2 \Phi}{d\phi^2} = -m^2\end{aligned}\]

The equation for \(\Phi\) is then,

\[\begin{aligned} \boxed{\frac{d^2\Phi}{d\phi^2}+m^2 \Phi=0} \label{eq:sv1}\end{aligned}\]

The remainder of the Laplace equation is

\[\begin{aligned} \frac{r^2 R^{\prime\prime}}{R}+\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\Big(\sin{\theta}\frac{d\Theta}{d\theta}\Big) -\frac{m^2}{\sin^2\theta}=0\end{aligned}\]

Now, we can separate the functions between \(r\) and \(\theta\). Let us define each term as \(\alpha\).

\[\begin{aligned} {\frac{r^2 R^{\prime\prime}}{R}=\alpha} \label{eq:sv_2}\\ {\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\Big(\sin{\theta}\frac{d\Theta}{d\theta}\Big)-\frac{m^2}{\sin^2\theta}=-\alpha } \label{eq:sv_3}\end{aligned}\]

Step 3:Solving the equations for each variables

Eq.[eq:sv1] for \(\Phi\)

\[\begin{aligned} \sin^2\theta \{\frac{r^2 R\prime\prime}{R} + \frac{1}{\Theta \sin\theta}\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta}) \}=-\frac{\Phi\prime\prime}{\Phi}= m^2\end{aligned}\]

We let \(m^2\) to be positive because we want periodic answer for \(Q\). Hence

\[\begin{aligned} \Phi \propto e^{\pm im\phi}\end{aligned}\]

Eq.[eq:sv_2] for R

\[\begin{aligned} r^2 R^{\prime\prime}-\alpha R = 0\end{aligned}\]

Notice that re-scaling \(r\) leaves this equation unchanged. This is a clue that powers of \(r\) may work. Substituting a power-law solution, \(\frac{R(r)}{r}=r^{l}\); (notice that in the beginning, we divide extra \(r\) for convenience).

\[\begin{aligned} r^2 (r^{(l+1) \prime\prime})-\alpha r^{l+1}&=0 \\ (l(l+1)-\alpha)r^{l+1} &= 0\\ \alpha &= l(l+1)\end{aligned}\]

with \(a=l(l+1)\), we have a solution for every number \(l\).Since it is a quadratic equation, there are two values of \(l\).

\[\begin{aligned} l^2 + l - \alpha =0\end{aligned}\]

Let \(l\) have some value \(x\), so that \(\alpha = x(x+1)\). Then, the value \(l=-(x+1)\) gives the same \(\alpha\).

\[\begin{aligned} \alpha = (-(x+1))(-(x+1)+1)=x(x+1)\end{aligned}\]

with \(\alpha = l(l+1)\), we now have to solve for \(\Theta\).

\[\begin{aligned} \frac{1}{\sin\theta}\frac{d}{d\theta}\Big( \sin\theta \frac{d\Theta}{d\theta}\Big) + \Big( l(l+1) - \frac{m^2}{\sin^2\theta}\Big)\Theta = 0 \label{eq:theta_1}\end{aligned}\]

  • Legendre polynomials: The solution to the \(\theta\) equation with \(m=0\).

  • associated Legendre polynomials: Solutions with general \(m\).

Eq.[eq:sv_3] for \(\Theta\)

Legendre polynomials, \(m=0\)
Now \(\sin\theta d\theta = d\cos\theta\). Hence, define \(x=\cos\theta\). Then,

\[\begin{aligned} \frac{d}{d\theta}&=\frac{dx}{d\theta}\frac{d}{dx}\\ &=-\sin\theta \frac{d}{dx}\\ \frac{d}{dx}&=-\frac{1}{\sin\theta}\frac{d}{d\theta}\end{aligned}\]

When we substitute this to Eq.[eq:theta_1] with \(m=0\),

\[\begin{aligned} \frac{d}{dx}\Big((1-x^2)\frac{d\Theta}{dx}\Big) + l(l+1)\Theta = 0\end{aligned}\]

Notice that \(\sin^2\theta=1-\cos^2\theta=1-x^2\). The solutions are polynomials, \(P_l(x)=P_l(\cos\theta)\)

Legendre Polynomial

Let us consider azimuthally symmetric case, meaning \(m=0\).

\[\begin{aligned} \frac{d}{dx}[(1-x^2)\frac{dP}{dx}]+[l(l+1)]P=0\end{aligned}\]

This equation is called Legendre Equation. The range of \(x\) is \(-1 \leq x \leq 1\) because the range of \(\cos\theta\) is \(0 \leq \cos\theta \leq \pi\)

\[\begin{aligned} \sum_{j=0}^{\infty} & \{[(a+j)(a+j-1)]a_j x^{\alpha+j-2} \nonumber \\ & -[(a+j)(a+j+1)+2(a+j)-l(l+1)]a_jx^{\alpha+j}\}\end{aligned}\]

\[\begin{aligned} l=0 P_0(x)&=1 \nonumber \\ l=1 P_1(x)&=x \nonumber \\ l=2 P_2(x)&=\frac{1}{2}(3x^2-1) \nonumber \\ l=3 P_3(x)&=\frac{1}{2}(5x^3-3x) \nonumber \\ l=4 P_4(x)&=\frac{1}{8}(35x^4-30x^2+3) \end{aligned}\]

\(\rightarrow\) \(P_1\) is an even function for even \(l\), and odd for odd \(l\).

\(\rightarrow\) Legendre polynomials can be represented by Rodrigues’ formula

\[\begin{aligned} P_l(x)=\frac{1}{2^{l}l!}\frac{d^l}{dx^l}(x^2-1)^l\end{aligned}\]

Example

\[\begin{aligned} P_2(x)&=\frac{1}{2^2 2!}\frac{d^2}{dx^2}(x^2-1)^2 \nonumber \\ &=\frac{1}{8} \frac{d^2}{dx^2}(x^4-2x^2+1) \nonumber \\ &=\frac{1}{8}(12x^2-4)=\frac{3x^2-1}{2} \nonumber\end{aligned}\]

\(\rightarrow\) \(P_l\) is orthogonal

\[\begin{aligned} \int_{-1}^{1} P_l(x) P_{l\prime}(x)dx =\frac{2}{2l+1}\delta_{ll\prime}\end{aligned}\]

This means that any function defined for \([-1,1]\) can be represented by expansion by \(P_i\)

\[\begin{aligned} f(x) = \sum_{l=0}^{\infty}A_l P_l(x), \quad \quad A_l=\frac{2l+1}{2}\int_{-1}^{1}f(x)P_l(x)dx\end{aligned}\]

Step 4:Putting all together.

For general \(m\), the full solution is

\[\boxed{V(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Big( A_{lm}r^l + \frac{B_{lm}}{r^{l+1}} \Big) P_{l}^{m}( \cos \theta) e^{i m \phi}}\]

2019년 3월 20일 수요일

상대론적 그리고 비상대론적 운동에너지 (KE 비교 그래프)


질문


전자의 상대론적, 그리고 비상대론적 운동에너지를 수식으로 표현하고 속도에 대한 그래프로 나타내어 설명해보라.

정답



Github

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import math
= 9.11e-31
= np.arange(0,3e+8,5000000)
=  0.5*m*(v**2)
K_r = m*c*c*(1/(np.sqrt(1-(v**2)/(c**2))) - 1)
plt.plot(v,K, 'r',label='non-relativistic KE')
plt.plot(v,K_r,'b', label='relativistic KE')
plt.title('KE for relativistic and non relativistic case')
plt.xlabel('Velocity')
plt.ylabel('Kinetic Energy')
plt.legend(loc='upper left')
plt.show()
cs



2019년 3월 18일 월요일

20190319 핵력의 존재 유무를 유추하기

Question
$^{56}Fe$ 핵의 반지름은 $R = R_0 A^{\frac{1}{3}} = 1.2 \times 10^{-15}[m] \times 56^{\frac{1}{3}} \simeq 4.6 \times 10^{-15}[m] $ 이다. 핵의 반지름 길이만큼 떨어진 두 양성자의 정전기력의 크기는 얼마인가?

Answer
\begin{align} \vec{F} &= \frac{1}{4 \pi \epsilon_0}\frac{q_1 q_2}{r^2}\hat{r}\\ &=\frac{1}{4 \pi 8.85\times 10^-12 [\frac{C^2}{N m^2}]}\frac{(1.6\times 10^-10 [C])^2}{(4.6\times 10^{-15}[m])^2}\\ &=11[N] \end{align}



설명
$F=ma$라는 수식을 생각해볼때, 양성자의 질량은 $m_p=1.67 \times 10^{-27}$으로 매우 작아, 이러한 미시적인 물체에게는 매우 큰 힘이다. 그렇지만 우리는 핵이 깨지지 않고 존재함을 알고 있다. (러더퍼드의 산란 실험) 그럼으로 핵안에는 이 정전기력의 척력의 극복하고 모아주는 또 다른 힘이 존재함을 예측할 수 있다.