Laplace Equation in Spherical Coordinates
Laplace Equation in spherical coordinates (r, \theta, \phi) becomes
\begin{aligned} \nabla^2 V = \frac{1}{r^2}\frac{\partial}{\partial r}\Big( r^2 \frac{\partial V}{\partial r}\Big) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta} \Big( \sin\theta \frac{\partial V}{\partial \theta}\Big) + \frac{1}{r^2 \sin^2 \theta}\frac{\partial^2 V}{\partial \phi^2}=0\end{aligned}
\begin{aligned} \nabla^2 V = \frac{1}{r}\frac{\partial^2}{\partial r^2}\Big(r V\Big) + \frac{1}{r^2 \sin\theta}\frac{\partial}{\partial \theta}\Big(\sin\theta \frac{\partial V}{\partial \theta}\Big) + \frac{1}{r^2 \sin^2\theta}\frac{\partial V}{\partial \phi^2}=0\end{aligned}
Step 1: Separation of variables assumption
Assume a product form for the potential V.
\begin{aligned} \boxed{V = \frac{R(r)}{r}\Theta(\theta)\Phi(\theta)}\end{aligned}
Here, we put \frac{R(r)}{r} for easy calculation. Then the result equation becomes
\begin{aligned} \frac{\Phi \Theta}{r}\frac{d^2}{d r^2}R(r)+\frac{R\Phi}{r^3 \sin\theta}\frac{d}{d \theta}\Big(\sin\theta \frac{d \Theta(\theta)}{d \theta}\Big)+\frac{R\Theta}{r^3\sin^2\theta}\frac{d \Phi(\phi)}{d \phi^2}=0 \label{eq:1} \end{aligned}
Step 2: Find the separated equations
If we multiply \frac{1}{R \Theta\Phi} to Eq.\eqref{eq:1}.
\begin{aligned} \frac{1}{rR}\frac{d^2}{dr^2}R(r)+\frac{1}{r^3\sin{\theta}}\frac{1}{\Theta }\frac{d}{d\theta}\Big(\sin\theta \frac{d\Theta(\theta)}{d\theta}\Big)+\frac{1}{r^3\sin^2\theta}\frac{1}{\Phi}\frac{d\Phi(\phi)}{d\phi^2} =0\end{aligned}
Nothing separates until we multiply r^3\sin^2\theta.
\begin{aligned} \frac{r^2 \sin^2\theta}{R}\frac{d^2}{dr^2}R(r) + \frac{\sin\theta}{\Theta}\frac{d}{d\theta}\Big(\sin\theta \frac{d\Theta(\theta)}{d\theta}\Big) + \frac{1}{\Phi}\frac{d\Phi(\phi)}{d\phi^2} =0\end{aligned}
Now, \Phi term has completely separated. If we take partial derivative with respect to \phi
\begin{aligned} \frac{\partial}{\partial \phi}\Big(\frac{1}{\Phi}\frac{d^2 \Phi}{d\phi^2}\Big) =0\end{aligned}
since the first two terms depend only on r and \theta. Therefor
\begin{aligned} \frac{1}{\Phi}\frac{d^2 \Phi}{d\phi^2} = -m^2\end{aligned}
The equation for \Phi is then,
\begin{aligned} \boxed{\frac{d^2\Phi}{d\phi^2}+m^2 \Phi=0} \label{eq:sv1}\end{aligned}
The remainder of the Laplace equation is
\begin{aligned} \frac{r^2 R^{\prime\prime}}{R}+\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\Big(\sin{\theta}\frac{d\Theta}{d\theta}\Big) -\frac{m^2}{\sin^2\theta}=0\end{aligned}
Now, we can separate the functions between r and \theta. Let us define each term as \alpha.
\begin{aligned} {\frac{r^2 R^{\prime\prime}}{R}=\alpha} \label{eq:sv_2}\\ {\frac{1}{\Theta \sin\theta}\frac{d}{d\theta}\Big(\sin{\theta}\frac{d\Theta}{d\theta}\Big)-\frac{m^2}{\sin^2\theta}=-\alpha } \label{eq:sv_3}\end{aligned}
Step 3:Solving the equations for each variables
Eq.[eq:sv1] for \Phi
\begin{aligned} \sin^2\theta \{\frac{r^2 R\prime\prime}{R} + \frac{1}{\Theta \sin\theta}\frac{d}{d\theta}(\sin\theta\frac{d\Theta}{d\theta}) \}=-\frac{\Phi\prime\prime}{\Phi}= m^2\end{aligned}
We let m^2 to be positive because we want periodic answer for Q. Hence
\begin{aligned} \Phi \propto e^{\pm im\phi}\end{aligned}
Eq.[eq:sv_2] for R
\begin{aligned} r^2 R^{\prime\prime}-\alpha R = 0\end{aligned}
Notice that re-scaling r leaves this equation unchanged. This is a clue that powers of r may work. Substituting a power-law solution, \frac{R(r)}{r}=r^{l}; (notice that in the beginning, we divide extra r for convenience).
\begin{aligned} r^2 (r^{(l+1) \prime\prime})-\alpha r^{l+1}&=0 \\ (l(l+1)-\alpha)r^{l+1} &= 0\\ \alpha &= l(l+1)\end{aligned}
with a=l(l+1), we have a solution for every number l.Since it is a quadratic equation, there are two values of l.
\begin{aligned} l^2 + l - \alpha =0\end{aligned}
Let l have some value x, so that \alpha = x(x+1). Then, the value l=-(x+1) gives the same \alpha.
\begin{aligned} \alpha = (-(x+1))(-(x+1)+1)=x(x+1)\end{aligned}
with \alpha = l(l+1), we now have to solve for \Theta.
\begin{aligned} \frac{1}{\sin\theta}\frac{d}{d\theta}\Big( \sin\theta \frac{d\Theta}{d\theta}\Big) + \Big( l(l+1) - \frac{m^2}{\sin^2\theta}\Big)\Theta = 0 \label{eq:theta_1}\end{aligned}
Legendre polynomials: The solution to the \theta equation with m=0.
associated Legendre polynomials: Solutions with general m.
Eq.[eq:sv_3] for \Theta
Legendre polynomials, m=0
Now \sin\theta d\theta = d\cos\theta. Hence, define x=\cos\theta. Then,
\begin{aligned} \frac{d}{d\theta}&=\frac{dx}{d\theta}\frac{d}{dx}\\ &=-\sin\theta \frac{d}{dx}\\ \frac{d}{dx}&=-\frac{1}{\sin\theta}\frac{d}{d\theta}\end{aligned}
When we substitute this to Eq.[eq:theta_1] with m=0,
\begin{aligned} \frac{d}{dx}\Big((1-x^2)\frac{d\Theta}{dx}\Big) + l(l+1)\Theta = 0\end{aligned}
Notice that \sin^2\theta=1-\cos^2\theta=1-x^2. The solutions are polynomials, P_l(x)=P_l(\cos\theta)
Legendre Polynomial
Let us consider azimuthally symmetric case, meaning m=0.
\begin{aligned} \frac{d}{dx}[(1-x^2)\frac{dP}{dx}]+[l(l+1)]P=0\end{aligned}
This equation is called Legendre Equation. The range of x is -1 \leq x \leq 1 because the range of \cos\theta is 0 \leq \cos\theta \leq \pi
\begin{aligned} \sum_{j=0}^{\infty} & \{[(a+j)(a+j-1)]a_j x^{\alpha+j-2} \nonumber \\ & -[(a+j)(a+j+1)+2(a+j)-l(l+1)]a_jx^{\alpha+j}\}\end{aligned}
\begin{aligned} l=0 P_0(x)&=1 \nonumber \\ l=1 P_1(x)&=x \nonumber \\ l=2 P_2(x)&=\frac{1}{2}(3x^2-1) \nonumber \\ l=3 P_3(x)&=\frac{1}{2}(5x^3-3x) \nonumber \\ l=4 P_4(x)&=\frac{1}{8}(35x^4-30x^2+3) \end{aligned}
\rightarrow P_1 is an even function for even l, and odd for odd l.
\rightarrow Legendre polynomials can be represented by Rodrigues’ formula
\begin{aligned} P_l(x)=\frac{1}{2^{l}l!}\frac{d^l}{dx^l}(x^2-1)^l\end{aligned}
Example
\begin{aligned} P_2(x)&=\frac{1}{2^2 2!}\frac{d^2}{dx^2}(x^2-1)^2 \nonumber \\ &=\frac{1}{8} \frac{d^2}{dx^2}(x^4-2x^2+1) \nonumber \\ &=\frac{1}{8}(12x^2-4)=\frac{3x^2-1}{2} \nonumber\end{aligned}
\rightarrow P_l is orthogonal
\begin{aligned} \int_{-1}^{1} P_l(x) P_{l\prime}(x)dx =\frac{2}{2l+1}\delta_{ll\prime}\end{aligned}
This means that any function defined for [-1,1] can be represented by expansion by P_i
\begin{aligned} f(x) = \sum_{l=0}^{\infty}A_l P_l(x), \quad \quad A_l=\frac{2l+1}{2}\int_{-1}^{1}f(x)P_l(x)dx\end{aligned}
Step 4:Putting all together.
For general m, the full solution is
\boxed{V(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \Big( A_{lm}r^l + \frac{B_{lm}}{r^{l+1}} \Big) P_{l}^{m}( \cos \theta) e^{i m \phi}}
댓글 없음:
댓글 쓰기